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Singular behavior of the velocity moments of a dilute gas under uniform shear flow
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The hierarchy of moment equations derived from the nonlinear Boltzmann equation describing
uniform shear flow is analyzed. It is shown that all the moments of order k > 4 diverge in time for
shear rates larger than a critical value aﬁk), which decreases as k increases. Furthermore, the results

suggest an asymptotic behavior of the form al®

~ k7 for large k. Consequently, even for very small

shear rates, either a stationary solution fails to exist (which implies the absence of a normal solution)
or a stationary solution exists but with only a finite number of convergent moments. Although the
uniform shear flow may be experimentally unrealizable for large shear rates, the above conclusions

can be of interest for more realistic flows.

PACS number(s): 47.50.+d, 05.20.Dd, 05.60.+w, 51.10.+y

I. INTRODUCTION

The understanding of physical phenomena in fluids far
from equilibrium still remains an open problem. The ef-
fort is usually focused on nonlinear transport properties,
which are related to the population of molecules with
energies of the order of or less than the mean kinetic en-
ergy. However, much less is known about the high-energy
population in nonequilibrium steady states. This popu-
lation plays a crucial role in processes such as chemical
reactions with a high activation energy or the controlled
thermonuclear fusion of a confined hydrogen plasma.

Since a general description of the high-energy popu-
lation does not seem feasible, it is convenient to gain
insight by considering particular states. Perhaps one of
the most extensively studied states is the so-called uni-
form shear flow (USF) [1]. At a macroscopic level, it is
characterized by a constant density m, a uniform tem-
perature T', and a linear profile of the  component of
the flow velocity along the y direction, i.e., u,(y) = ay,
a being the constant (positive) shear rate. At a micro-
scopic level [2], the USF is described by a solution of the
Liouville equation with Lees-Edwards boundary condi-
tions [3], which can be seen as periodic boundary con-
ditions in the local rest frame. These conditions assure
the consistency of uniform shear, density, and tempera-
ture, even far from equilibrium. In fact, this state has
been used to study rheological properties, such as shear
thinning and viscometric effects. In addition, a lot of in-
terest was stimulated by the discovery by Erpenbeck [4]
of a transition from USF to an ordered state. On the
other hand, it is worthwhile to stress the distinction be-
tween the USF and the steady planar Couette flow. In
the latter, the shearing is produced by walls in relative
motion and the boundary conditions correspond to parti-
cles interacting with the walls. Consequently, boundary
effects are present and also the shear rate, density, and
temperature are local quantities. Far from equilibrium,
the rheological properties of the Couette flow differ from
those of the USF [5].

In general, no rigorous theory based on first princi-
ples exists for the USF state. However, if one selects
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the nonlinear Boltzmann equation as a secure basis for
nonequilibrium phenomena in dilute gases, it is possible
to derive some exact results. In the case of USF, the time
evolution of moments of second [6] and fourth order [7,8]
has been obtained for Maxwell molecules. In contrast to
what happens for the second order moments, the fourth
order moments do not reach stationary values for shear
rates larger than a certain critical value. It is clear that
moments of fourth order are not sufficient to infer the
high-velocity behavior of the distribution function for a
given shear rate. The problem we want to address in
this paper is the analysis of higher-order moments. In
particular, we investigate whether higher-order moments
diverge for smaller values of the critical shear rate and
whether there exists a finite range of shear rates for which
all the moments adopt a stationary form. These points
can also shed light on the possible implications discussed
in Ref. [4].

II. RESULTS

In the case of a low-density gas, the statistical-
mechanical description in terms of the phase-space prob-
ability density p(T,t) can be replaced by a kinetic de-
scription in terms of the one-particle velocity distribution
function f(r,v;t). The master equation for this function
is the Boltzmann equation [9]

S vV 4V T Fe) = IS ()

where Foy is an external force and J[f, f] is the colli-
sion operator. For USF, the distribution function adopts
the form [10] f(r,v;t) = f(&,t), where £ = v — u(r) is
the peculiar velocity. The external force is chosen to con-
trol the viscous heating, so that the temperature remains
constant. The simplest choice is the thermostat force de-
rived from Gauss’s principle of least constraint, namely,
Foxt = —maé. Under these conditions, Eq. (1) becomes

o o o
af—aﬁya—&“f—aéz‘ffz'][f,f]- (2)

The general solution of this equation is not known. Nev-
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ertheless, the associated hierarchy of moment equations
can be recursively solved in the special case of Maxwell
molecules, namely, particles interacting via an r~* po-
tential [11].

About forty years ago, Ikenberry and Truesdell [6] ob-
tained the time evolution of the second order moments,
namely, the pressure tensor, for arbitrary values of the
shear rate. In the long-time limit, the pressure tensor
reaches a stationary form, which defines the nonlinear
shear viscosity and normal stresses. In that limit, the
thermostat parameter « is given as a function of the shear
rate by

2 .2 (1 -1 a?
a:§ v sinh {gcosh (1—9—95)] ) (3)

where v = n)), is an effective collision frequency, A,
being an eigenvalue of the linearized Boltzmann collision
operator. The third degree moments (e.g., the heat flux)
decay exponentially in time [6,8], so that they vanish in
the steady state. According to the concept of normal
solution [12], if Eq. (2) admits a normal solution, it must
necessarily be stationary. To investigate this point, we
now consider the velocity moments of the distribution
function.
Let us introduce the polynomials [12]

Uopm (€) = Nyo &8 LD (£2) Y (6) (4)
with
3/2 r! Y2
N,.g = |:27T m] . (5)

The polynomials {¥y(€), k = (r,4,m)} constitute a
complete set of orthonormal functions with the inner
product

(@x) = 32 / dg =€ & (€) x(€) . (6)

Here and in the following we take (2kp7/m)'/? = 1 and
n = 1. Due to the invariance properties of uniform shear
flow, we can restrict ourselves to the subset {¥y} with
k = 2r + ¢ = even and m =even. In this subset, there
exist (% + 1)? independent polynomials of degree k. Let
us assume that the velocity distribution function can be
represented in terms of the set {Uy}, i.e.,
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where the moments My (¢) are defined as
M(e) = [ g wi(e) £(6r). (®)

Taking moments in Eq. (2) for Maxwell molecules one
arrives at the following hierarchy:

1o}
&Mk -+ a; <‘1ka

4+ Z <‘I’kl
kl

o
= —Ang—i— Z Jrwrkr My My . (9)
kl,k’l

a *
gy bg \pk> Mk’

E‘%‘\I’k> My

Here,

AL =2, = 27r/d9 sin(@) o(cos6)

X [1 + 68,0000 — cos2"tt (g) P, (cos g)
2 2
. 2p 0 . 0
— sin®" ¢ (5) P, (sm 5)] (10)

are the eigenvalues of the linearized collision operator
[12,13], o(cos #) being the collision rate. The dagger in
the last summation of Eq. (9) denotes the restrictions
k' + k" = k and k', k" > 0. The explicit expression for
the coefficients Jxy/x is known [12] but it will not be
needed in our discussion.

The brackets appearing in Eq. (9) are zero if &' > k.
Consequently, the hierarchy (9) can be recast into the
form

s}

— M, Ly My = By, 11

ot e + 2.(:: Kk Mic k (11)
(k'=k)

where, for a given order k, Ly is a (g +1)% x (% +1)2

square matrix given by

Liae = (AL + ka)bae + a<‘~Ifkr ‘I’k> (12)

0
gya—gm

and By is a combination of moments of order less than k.
A tedious but standard calculation yields, for 27’ + ¢/ =
2r + £,

‘Ijrlm> = ermtsl’lam,m’¥-2 + R:’g’m' 6!’16m’,m—2 + Sr£m5£,£’—25m,m’~2 + S:/glmlgl’,l—Z(sm’,m—Z

.m
+S1'E—mtsl,l'—26m,m'+2 + S:'['—m'al’,£~26m’,m+2 + ZEJZ’Zam’m ) (13)

F(&8) =ne¢ 3 Mic()Wx(8) (7)
k
J
<‘I’r’£’m’ £y£
where
R, _i 2Hl+3 [(tm+2)(L—m) 1/2
T T (20 + 3)(2€ — 1) [(€+m)!([— m— 2)!] ’
(14)
i1 r(r+ £+ 3¢+ m+4)! b
Srem = 39543 [(2z+ 1)(2;+ 5)(Z+m)!] (15)

The time evolution of all the moments My of the same
order k is described by the corresponding eigenvalues
Ak(a) of the matrix Lyy'. Obviously, Ax(0) = A). The
behavior of My in the long-time limit is governed by the
eigenvalue with the smallest real part. Such an eigenvalue
turns out to be /\Eo(a)' Consequently, the moments of

2
order k diverge to infinity when A 0(a) becomes nega-
2
tive.
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We have evaluated /\ho(a) for k = 4,6,...,36 by us-
2

ing the table of A%, reported in Ref. [13]. Figure 1 shows
)‘50 as a function of the shear rate for £k = 4,6,8, and

2

20. In the following, we take A, = 1, so that v~! is

the time unit. The eigenvalue Ay 0(a) monotonically de-
2

creases as the shear rate increases and eventually changes
sign at a certain critical value a®). This extends the re-
sults already obtained for k = 4 [7,8]. Table I gives the
numerical values of a‘(:k) for k = 4,6,...,36. In addition
to actual Maxwell molecules we have also considered the
isotropic Maxwell model [14], for which o(cos §) = const.
We observe that the value of agk) decreases as the order
k increases. This means that if a > aﬁk) all the moments
of order equal to or greater than k diverge as t — co. On
the other hand, if a < agk) all the moments of order less
than k reach stationary values in the long-time limit.
The relevant question now is whether there exists a
nonzero lower bound for the set {aﬁk), k > 4}. In other
words, is limg_ oo al®) = () different from zero? If that
were the case, all the moments would reach stationary
values for shear rates smaller than a£°°) In order to
clarify this question, we have plotted In at® versus Ink
in Fig. 2. We see that the points corresponding to the
largest values of k tend to align. This suggests that the

asymptotic behavior of agk) for large k is of the form
al®) ~ kH (16)

A linear fit gives p ~ 0.91 for actual Maxwell molecules
and p ~ 1.14 for the isotropic model. We must emphasize
that no rigorous proof of the law (16) has been given,
although it is strongly supported by the results presented

in Table I. In this context, Eq. (16) implies that al™ =o.

FIG. 1. Shear-rate dependence of the smallest eigenvalue,
’\EO(“)’ for k = 4,6,8, and 20, and for the actual scattering
2

model.

TABLE 1. Values of the critical shear rate a‘(:k) associated

with moments of order k = 4,6,...,36.
k a,(;k)
Actual scattering Isotropic scattering

4 6.846 7.746
6 2.346 3.344
8 1.450 1.667
10 0.817 0.940
12 0.618 0.633
14 0.502 0.479
16 0.427 0.388
18 0.373 0.327
20 0.333 0.283
22 0.301 0.250
24 0.276 0.224
26 0.255 0.202
28 0.238 0.185
30 0.223 0.171
32 0.210 0.158
34 0.199 0.147
36 0.189 0.138

III. CONCLUSIONS

In summary, we have analyzed the time evolution of
the velocity moments from the Boltzmann equation for
Maxwell molecules under uniform shear flow (USF). The
results obtained here allow us to conclude that (i) all the
moments of order k£ > 4 grow exponentially in time for
shear rates larger than a certain critical value agk), (i1)

the numerical value of a&k)

increases, and (iii) limg— o0 o™ = 0. This implies that,
for any value of the shear rate, there exists a value of
k such that all the moments of order equal to or larger
than k diverge as t — oo. Further, (iv) the results sup-

monotonically decreases as k

20 - :

1.0
)

In a(:

0.0 .

In k

FIG. 2. Log-log plot of al® versus k for the actual scat-
tering model (circles) and the isotropic scattering model
(squares). The straight lines are linear fits of the last four
points.
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port the conjecture that the asymptotic behavior of al®
for large k is of the form (16). The above conclusions
seem to be independent of the scattering model chosen
for Maxwell molecules. The apparent influence of the
scattering model on the value of p might be due to the
fact that the values of k considered here are not suffi-
ciently large. From that point of view, one is tempted to
conjecture that p = 1 for Maxwell molecules, regardless
of the details of the scattering model.

The analysis carried out here has been concentrated
on the hierarchy of moments, Eq. (9), rather than on the
Boltzmann equation itself, Eq. (2). In this sense, we only
have indirect information about the time evolution of the
distribution function. In principle, there are two possibil-
ities: (a) a stationary solution of the Boltzmann equation
does not exist; (b) a stationary solution exists but with a
finite number (depending on the value of the shear rate)
of convergent moments. The possibility (a) means that
Eq. (2) does not admit a normal solution, in the sense of
kinetic theory [12]. A solution of the Boltzmann equation
is called normal when its whole time and space depen-
dence is contained in a functional dependence of f on n,
u, and T'. Most of the treatments and applications of the
Boltzmann equation, such as the Chapman-Enskog ex-
pansion, are based on the existence of a normal solution
for times sufficiently long and points sufficiently far from
the boundaries. The fact that, according to the possi-
bility (a), a normal solution fails to exist for shear rates
arbitrarily small would have important physical conse-
quences regarding our understanding of nonequilibrium
phenomena. A normal solution does exist in the case
(b), but with a high-velocity population decaying more
slowly than a certain power, even for small shear rates. A
possible scenario for the case (b) is an asymptotic behav-
ior f(&) ~ £7579(9) for large ¢, where lim, o, 0(a) = 0
and o(a) ~ a~'/# for small shear rates; the critical shear
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rate at*) would be then the solution of a(aék)) =k - 2.
Recent simulation results [15] give support to this spec-
ulation. The long tail in velocity space of the distribu-
tion function would have an important influence on those
processes (such as certain chemical or thermonuclear re-
actions) which are extremely sensitive to the fraction of
particles with a sufficiently high energy. A small increase
in the shear rate would give rise to a large increase in the
occurrence of those events. Elucidation of these points
requires further investigation, from both analytical and
simulation points of view. In either way, even for small
shear rates, the velocity distribution function differs ap-
preciably from the equilibrium distribution for high ve-
locities, so that a linearization around equilibrium is not
justified for those velocities.

In Ref. [7] it was suggested that the singular behav-
ior of the fourth order moments might be related to the
transition from USF to an ordered state observed in dense
fluids [4]. However, the fact that the singularity appears
even for arbitrarily small shear rates seems to preclude
that possibility. In addition, Monte Carlo simulations
of the Boltzmann equation [16] show that the USF is
stable. Finally, it is worthwhile to mention that Monte
Carlo simulations indicate that a behavior similar to the
one reported here for Maxwell molecules can be extended
to other repulsive potentials.
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